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Abstract—This student research project explores the recording
of full three-dimensional (3D) scenes using only three Azure
Kinect cameras. By leveraging novel methodologies such as
Neural Radiance Fields (NeRF) and 3D Gaussian Splatting,
the captured images are processed into a ”4D data structure”,
enabling the creation of new videos from any perspective. The
project’s goal is to determine the extent to which visually high-
quality 3D scenes can be generated with minimal equipment.
The study highlights the potential of these advanced techniques
to enhance for example online learning experiences by providing
an accessible tool for creating immersive 3D content. Experiments
demonstrated that using depth data from RGB-D cameras com-
pensates for the reduced number of input images, maintaining
high visual quality. The results show that combining static
Gaussian Splatting-generated backgrounds with point cloud data
from Azure Kinect cameras can produce impressive 3D scene
reconstructions with reduced computational demands, making
the technology more accessible and cost-effective.

Index Terms—NeRF, Gaussian Splatting, Volumetric Video,
Point Cloud, Azure Kinect

I. INTRODUCTION

This student research project from our university is about
recording a full three-dimensional (3D) scene using only
three Azure Kinect 3D cameras. The utilization of novel
methodologies, such as Neural Radiance Fields (NeRF) and
3D Gaussian Splatting, enables the saving and processing of
the recorded images in a novel 4D data structure, thereby
facilitating the generation of new videos of the scene from
any novel perspective. The research project sought to ascertain
the extent to which visually high-quality 3D images can
be generated using simple means and a small number of
cameras. To this end, current research work was reproduced
and combined in order to generate new perspectives from the
self-recorded data.

A. Motivation

While the world is 3D, most existing visualization methods
work only in 2D. A field suffering from this loss of information
due to the dimension reduction is higher education. Complex
machines and concepts require intensive training of all aspects
to be mastered. The objective of this project is to provide
access to this missing information in a lightweight, easily
accessible application. Therefore, the application should be
able to replay dynamic real-world scenes in order to be
explored by learners. Unlike traditional methods that require
a lot of cameras, we use only three Azure Kinect cameras and
utilize novel view synthesis methods, reducing both setup com-
plexity and cost. We investigate the effectiveness of NeRF and
Gaussian Splatting techniques for reconstructing 3D scenes,
and aim to enhance online learning experiences by providing
educators with an accessible tool set for creating immersive
3D content.

II. RELATED WORK

Since NeRF [4] provided revolutionary results on novel
view synthesis, the topic has skyrocketed. Many thousand
papers building on the foundation of the original NeRF were
published since 2020 that improved several aspects of NeRF
or sought different approaches. In our project, we tried to
cluster various approaches and examined to what extent Im4D
[3], 4K4D [5] or Dynamic 3D Gaussians [2] are suitable
for our setup with a strongly reduced number of cameras as
input. Im4D [3] is a hybrid scene representation combining
the consistent rendering of grid-based methods with the ap-
pearance representation of multi-view image-based methods.
In their work the dynamic geometry is encoded as a 4D
density function made of spatio-temporal feature planes and a



small MLP network. Detailed appearances are not memorized
but inferred from image features. Im4D achieves state-of-the
art rendering quality and performance while realizing real-
time rendering on a single GPU. 4K4D [5] is an extension
of the Im4D paper, in which realistic real-time synthesis of
dynamic 3D scenes with 4k resolution can be displayed. The
speed of high-resolution images is still limited. To solve this
problem, the points are regulated and robustly optimized in a
natural way based on a 4D feature grid. In addition, a novel
hybrid appearance model is used, which significantly increases
rendering quality while maintaining efficiency. In addition to
NeRF, there are other options such as 3D Gaussian Splatting
[1] to reconstruct a 3D scene from images. While the original
approach (Gaussian Splatting) is also only suitable for static
images, Dynamic 3D Gaussians [2] presents a method for
dynamic scene synthesis and dense 6-DOF tracking, using
an analysis-by-synthesis framework with 3D Gaussians. The
dynamic scenes are modeled by allowing Gaussians to move
and rotate over time with constraints to ensure physical ac-
curacy. This approach eliminates the need for correspondence
or flow input, enabling applications such as first-person view
synthesis, dynamic scene composition, and 4D video editing.

III. METHOD

A. Recording Setup

Fig. 1: Simple Setup for Recordings

We tried to use as little material as possible for our multi-
view camera setup. We used three Azure Kinect cameras.
To minimize frame loss, one laptop was connected to each
camera. MKV files were recorded via the Recording.exe of the
Azure Kinect SDK. The recordings were made at a resolution
of the RBG camera of 1920x1080 pixels, a frame rate of 30
frames per second and a length of ten seconds. The depth
sensor was set to “NFOV 2X2BINNED” mode.

The procedure was as follows. First, a ten-second recording
of the calibration object was made (see chapter on marker-
based calibration). This recording can be used to determine

the positions of the cameras. After this calibration recording,
the cameras must no longer be moved. Once the calibration
object has been recorded, various recordings can be made
on this basis. As soon as the cameras have been moved, a
new calibration image must be taken. As soon as the images
are available, the point clouds can be generated with the
software of our project, which can later be combined with
static Gaussian Splats.

The cameras were set up at a distance of 1.5 meters to 3.5
meters from the calibration object. The tripods on which the
cameras were placed had a height of approx. 1.80 meters. The
cameras were positioned at an angle of approx. 120 degrees
to each other.

Fig. 2: Physical Setup with network infrastructure

A network structure (see Fig. 2) has been set up to reduce
the physical workload and minimize the number of personnel
required to start a recording. The other laptops can be con-
trolled for recording via a web app and a socket connection
(see Fig. 3). The network also makes it possible for the files
to be directly available on the computer on which work is to
continue.

Fig. 3: Connection of a PC with Kinect and software structure



B. Marker Based Calibrating

To ensure a simple setup, camera calibration via marker
tracking was applied. The open source project OpenCV has
provided us with the basis for this. An ArUco marker object
and a ChArUco poster were used as markers.

Fig. 4: Tracked ArUco Marker (30 and 1)

1) ArUco Marker: An ArUco marker object was created
as a cube with one marker on each side. The markers have
different IDs. The cube has an edge length of 17 cm x 17
cm x 17 cm. Based on the tracked markers in the camera
images (see Fig. 4), the center of the cube can be calculated,
which is then set as the center of the scene and can be
used to determine the camera positions and orientations. Due
to the size of the marker and the incidence of light in the
scene, inaccuracies may occur when tracking the markers in
the camera image. During the recording in which the camera
positions are determined, ten seconds are recorded. With 30
frames per second, 300 different results of orientation matrix
and position vector per marker ID can be calculated. To
analyse the position of the camera, an algorithm has been
developed that compares pairs of detected marker positions.
This comparison results in a small difference in the cube
position. Once the relevant pairs have been determined, the
median of these pairing results is used to determine the camera
position in relation to the cube position.

2) ChArUco-Board: A ChArUco board was created next
to the ArUco Cube. This is printed on an A1 poster. The
ArUco markers on it have a size of 11.2 cm x 11.2 cm and
the chessboard surfaces have a size of 15 cm x 15 cm.

Again, 300 different orientation matrices and position vec-
tors can be calculated with a calibration video of ten seconds.
However, only one position is output by OpenCV. Accordingly,
the median of the calculated results can be taken and used as
the position of the poster. This can be used to determine the
position of the camera.

Fig. 5: Tracked ChArUco-Board

C. Point cloud post-processing

Fig. 6: Post-processing from whole room to extracted center

Once the cameras have been calibrated, the point cloud can
be generated. Open3D was used for this. The RGB-D data
was extracted from the MKV files and calculated with the
calibration data so that the data can be combined to form a
point cloud. Open3D functions were used to extract the object
or person in the center (see Fig. 6). DB-Scan can be used
to select the cluster with the most points. This is usually the
cluster with the desired object.

The ground can be removed from the scene with a surface
selection function.

Once these functions have been carried out, the object in the
scene is released. However, this is subject to errors depending
on the scene. See results for more information.

D. Testing of various existing scientific papers

Among others, nerfstudio [6] and DUSt3R [7] were tested to
create the static scene. Static NeRFs and Gaussian Splats could
be generated with nerfstudio. These Gaussian Splats could
be easily inserted into Unity using an existing plugin. With



Fig. 7: Generating dynamic Gaussian Splats with only 3
Perspectives

DUSt3R, meshes could also be created with only three images
of the Kinect structure. Compared to the Gaussian Splats
and NeRFs from nerfstudio, however, these were visually less
convincing.

To visualize the dynamic elements in the scene, Im4D,
4K4D and Dynamic Gaussian Spaltting were considered. After
4K4D was published as new research following Im4D, Im4D
was neglected. 4K4D could be made to work with the pub-
lished tools, but there were problems transferring this method
to our data. When trying to process only 3 camera perspectives
in the project, 4K4D could not be executed.

Dynamic Gaussian Splatting could be executed. With the
data provided by Luiten et. al. only three perspectives could
be selected and the project executed (see Fig. 7). As expected,
the visual result was significantly worse than with more
perspectives. However, the scene could be recognized. Due
to time constraints, we were unable to carry out any further
detailed tests with our data using the Dynamic Gaussian
Splatting project as part of our project.

E. Combining point clouds and Gaussian Splats

To display the point clouds, we decided to visualise them
using Unity. We were able to use a Gaussian Splat integration
in Unity that allows us to visualise a Gaussian Splat when
given a PLY file. We wrote our own plugin to animate our
point clouds and display them in Unity. Fig. 8 shows the
results of our successful combination. You can see the typical
appearance of a Gaussian splat, combined with our point cloud
in the center.

IV. RESULTS

We were able to achieve the following results with our
approach. It took two people seven minutes to set up the
hardware. From setup to the point at which recordings could be
made at a work show was achieved in approx. ninety minutes.
The difference in time is largely due to lighting dependencies,
camera properties of the Kinect and probably the USB-C
connection.

At the exhibition where the setup was exhibited, over 30
short recordings were made, all of which were available to

Fig. 8: Result Pictures out of Videos created at an Exhibition

those filmed at six pm in the evening. The processing time of
the five-second recordings was approx. six minutes.

Our project makes it possible to play “point cloud videos”
in a game engine and combine them with a Gaussian Splat.

The best calibration results were achieved with the cameras
at a distance of 1.5 meters to 2 meters from the calibration
object. It was helpful not to have direct sunlight falling on the
calibration object through a window.

In our work, we found that the ArUco cube produces more
accurate calibration results than the ChArUco poster.

The post-processing method is quite unreliable. It often
leads to errors where parts of the object in the center of
the scene disappear or the center is completely removed. To
circumvent this problem, the “Depth trunc” of Open3D for
generating the point clouds from the depth images was often
changed to achieve similar results as described above in the
section on point cloud post processing.

V. CONCLUSION

Through our work, we were able to show a simple way to
create visually convincing volumetric videos without a lot of
equipment. We were also able to identify ways in which this
procedure can be improved.

Different calibration objects can be tested to improve the
calibration. The ArUco cube delivered better results than the
ChArUco board, which could be due to the size of the ArUco
markers. At the same time, however, it could also be that the
poster is more susceptible to direct light incidence and the
light reflections make it more difficult for the tracking to be
perceived. A good option for further testing could be to create
a larger cube.

Post-processing to cut out the person or object in the center
of the scene can be an uncertainty factor. This effect is
particularly noticeable when people do not have their feet on
the ground during the recording or are wearing black reflective
shoes that cannot be detected by the Kinect. In our opinion,
this section could be improved by working with masks or
improving the post-processing process.

The visual quality of the point clouds in the final scene has a
big difference to the static Gaussian splats that were generated.
To reduce this difference, it would be possible to combine
the data from the three Kinects with the Dynamic Gaussian
Splatting project. In a series of tests conducted by our team,



it has already been determined that three cameras might not
be enough to achieve a very good visual result. However, an
additional camera could already lead to an increase in quality.
It can also be evaluated in future work whether the data from
Kinect cameras can be combined with the work of 4K4D.
This could also lead to an increase in the quality of the result
without increasing the hardware effort.

TRANSLATION DISCLAIMER

The translation of the contents of this paper was car-
ried out using DeepL. While efforts have been made
to ensure accuracy, minor discrepancies or inaccuracies
may be present. (DeepL SE, DeepL translator, 25.07.2024,
https://www.deepl.com/de/translator).

REFERENCES

[1] Bernhard Kerbl, Georgios Kopanas,Thomas Leimühler, and George
Drettakis. 3D Gaussian Splatting for Real-Time Radiance Field Ren-
dering, August 2023. arXiv:2308.04079 [cs].

[2] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan.
Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthe-
sis, August 2023. arXiv:2308.09713 [cs].

[3] Haotong Lin, Sida Peng, Zhen Xu, Tao Xie, Xingyi He, Hujun Bao,
and Xiaowei Zhou. Im4D: High-Fidelity and Real-Time Novel View
Synthesis for Dynamic Scenes, October 2023. arXiv:2310.08585 [cs].

[4] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan
T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis, August 2020.
arXiv:2003.08934 [cs].

[5] Zhen Xu, Sida Peng, Haotong Lin, Guangzhao He, Jiaming Sun, Yujun
Shen, Hujun Bao, and Xiaowei Zhou. 4K4D: RealTime 4D View
Synthesis at 4K Resolution, October 2023. arXiv:2310.11448 [cs].

[6] Tancik, Matthew; Weber, Ethan; Ng, Evonne; Li, Ruilong; Yi, Brent;
Wang, Terrance et al. (2023): Nerfstudio: A Modular Framework
for Neural Radiance Field Development. Online verfügbar unter
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